Fast, Efficient and Scalable Solutions
Explore the comprehensive NCERT Textbook Solutions for Class X.
angle A |
0° |
30° |
45° |
60° |
90° |
Sin A |
$$ 0 $$ |
$$ 1 \over 2 $$ |
$$ 1 \over \sqrt{2} $$ |
$$ \sqrt{3} \over 2 $$ |
$$ 1 $$ |
Cos A |
$$ 1 $$ |
$$ \sqrt{3}\over 2 $$ |
$$ 1 \over \sqrt{2} $$ |
$$ 1 \over 2 $$ |
$$ 0 $$ |
Tan A |
$$ 0 $$ |
$$ 1\over \sqrt{3} $$ |
$$ 1 $$ |
$$ \sqrt{3} $$ |
$$ \infty $$ Not |
Cosec A |
$$ \infty $$ Not |
$$ 2 $$ |
$$ \sqrt{2}$$ |
$$ 2 \over \sqrt{3} $$ |
$$ 1 $$ |
Sec A |
$$ 1 $$ |
$$ 2 \over \sqrt{3} $$ |
$$ \sqrt{2} $$ |
$$ 2 $$ |
$$ \infty $$ Not |
Cot A |
$$ \infty $$ Not |
$$ \sqrt{3} $$ |
$$ 1 $$ |
$$ 1\over \sqrt{3} $$ |
$$ 0 $$ |
Evaluate the following:
(i) sin 60° cos 30° + sin 30° cos 60°
Solution :
Given
sin 60° cos 30° + sin 30° cos 60°
As we know,
sin 30° = $ 1 \over 2 $, sin 60° = $ \sqrt{3} \over 2 $, cos 30° = $ \sqrt{3} \over 2 $, cos 60° = $ 1 \over 2 $.
By substituting trigonometric ratios
$$({\sqrt{3} \over 2} × {\sqrt{3} \over 2}) + ({ 1\over 2} × {1 \over 2})$$
$$⇒ {{3 \over 4} + {1 \over 4}}$$
$$⇒ {{3 + 1 }\over 4} $$
$$⇒ 1 $$
Therefore, sin 60° cos 30° + sin 30° cos 60° = 1.
Evaluate the following:
(ii)$$ 2 tan^2 45° + cos^2 30° – sin^2 60° $$
Solution :
Given
$$ 2 tan^2 45° + cos^2 30° – sin^2 60° $$
As we know,
sin 60° = $ \sqrt{3} \over 2 $, cos 30° = $ \sqrt{3} \over 2 $, tan 45° = 1.
By substituting trigonometric ratios
$$ 2 tan^2 45° + cos^2 30° – sin^2 60° $$
$$⇒ { 2 × 1 + ({3 \over 2})^2 - ({3 \over 2})^2}$$
$$⇒ 2 $$
Therefore, $ 2 tan^2 45° + cos^2 30° – sin^2 60° $ = 2.
Evaluate the following:
(iii) $$ cos 45° \over {sec 30° + cosec 30°}$$
Solution :
As we know,
sec 30° = $ 2 \over \sqrt{3} $, cosec 30° = 2 , cos 45° = $ 1 \over \sqrt 2 $
By substituting trigonometric ratios
$$ cos 45° \over {sec 30° + cosec 30°}$$
$$⇒ {{1 \over \sqrt 2} \over {{2 \over \sqrt{3}} + 2}}$$
$$⇒ {{1 \over \sqrt 2} \over {{2 + {2\sqrt{3} }\over \sqrt{3}}}}$$
$$⇒ {{1 \over \sqrt 2} × {{ \sqrt{3} \over 2 + {2\sqrt{3} }}}}$$
$$⇒ {\sqrt{3} \over {2(\sqrt 2) + {2\sqrt{6} }}}$$
Rationalising the denominator
$$ ⇒ {{\sqrt{3} \over {2\sqrt 2 + {2\sqrt{6} }}} × {{2\sqrt 2 - {2\sqrt{6} }} \over {2\sqrt 2 - {2\sqrt{6} }}}}$$
$$⇒ {{\sqrt{3}× ({{2 \sqrt 2 - {2\sqrt{6} }}})} \over {{(2\sqrt 2)^2 - {(2\sqrt{6})^2 }}}}$$
$$⇒ {{2 \sqrt 6 - {2\sqrt{18} }} \over {8 - 24}}$$
$$⇒ {{2 \sqrt 6 - {2\sqrt{18} }} \over {- 16}}$$
By taking –2 as common from numerator
$$ ⇒ { -2({ -\sqrt 6 + \sqrt{18}}) \over {- 2 × 8}}$$
$$⇒ {{\sqrt{(9 × 2)} -\sqrt 6 } \over { 8}}$$
$$ ⇒ {{3 \sqrt{ 2} -\sqrt 6 } \over { 8}}$$
Therefore, $ cos 45° \over {sec 30° + cosec 30°}$ = $ {3\sqrt{2} -\sqrt 6 } \over { 8}$.
Evaluate the following:
(iv) $$ {sin 30° + tan 45° − cosec60° } \over {sec 30° + cos 60° + cot 45°}$$
Solution :
As we know,
sin 30° = $ 1 \over 2 $, cosec 60° = $ 2 \over \sqrt{3} $ , tan 45° = $ 1 $
By substituting trigonometric ratios
$$ {sin 30° + tan 45° − cosec60° } \over {sec 30° + cos 60° + cot 45°}$$
$$⇒ {{{1 \over 2 }+ 1 − {2 \over \sqrt{3} }} \over {{2 \over \sqrt{3}} + {1 \over 2} + 1}}$$
$$⇒ {{{3 \over 2 } − {2 \over \sqrt{3} }} \over {{2 \over \sqrt{3}} + {3 \over 2}} }$$
$$⇒ {{{3\sqrt{3}- 4 } \over {2\sqrt{3}} } \over { 4 + {3\sqrt{3}} \over {2\sqrt{3}} }}$$
$$⇒ {{3\sqrt{3}- 4 } \over { 4 + {3\sqrt{3}}}}$$
Rationalising the denominator
$$ ⇒ {{ {3\sqrt{3}- 4 } × {( {3\sqrt{3}} - 4)} }\over {{( {3\sqrt{3}} + 4)} × {( {3\sqrt{3}} - 4)}}}$$
$$⇒ {{({3\sqrt{3}- 4 })^2}\over { ({3\sqrt{3}})^2 - 4^2 }}$$
$$⇒ {{27 - 24\sqrt{3} + 16 }\over { 27 - 16 }}$$
$$⇒ {{43 - 24\sqrt{3} }\over { 11 }}$$
Therefore, Answer : $$ {43 - 24\sqrt{3} }\over { 11 }$$.
Evaluate the following:
(v) $$ {5 cos^2 60° + 4sec^2 30°- tan^2 45° } \over {sin^2 30° + cos^2 30°}$$
Solution :
As we know,
sin 30° = $ 1 \over 2 $, cos 30° = $ \sqrt{3} \over 2 $ , tan 45° = $ 1 $.
sec 30° = $ 2 \over \sqrt{3} $, cos 60° = $ 1 \over 2 $.
By substituting trigonometric ratios
$$ {5 cos^2 60° + 4sec^2 30°- tan^2 45° } \over {sin^2 30° + + cos^2 30°}$$
$$ {5({1 \over 2 })^2 + {4 ({2 \over \sqrt{3}})}^2 - {1}^2} \over {({1 \over 2 })^2 + ({\sqrt{3} \over 2})^2 }$$
$$⇒ {{5 × {1 \over 4} + {4 × {4 \over 3}} - 1} \over {{1 \over 4 } + {3 \over 4} }}$$
$$⇒ {{ {5 \over 4} + { {16 \over 3}} - 1} \over {{1 +3 } \over 4 }}$$
$$⇒ { {15 + 64 - 12 }\over 12 } × {4 \over 4 }$$
$$⇒ { 67 \over 12 } $$
Therefore, Answer : $$ { 67 \over 12 } $$.
Choose the correct option and justify your choice:
(i) $$ {{2tan 30° } \over { 1 + tan^2 30°} } = $$
(A) sin 60° (B) cos 60°
(C) tan 60° (D) sin 30°
Solution :
As we know,
tan 30° = $ {1 \over \sqrt{3}} $.
By substituting trigonometric ratios
$$ {{2tan 30° } \over { 1 + tan^2 30°} } $$
$$⇒ {{2 × {1 \over \sqrt{3}} } \over { 1 + ({1 \over \sqrt{3}})^2 } } $$
$$⇒ {{2 \over \sqrt{3}} \over { 1 + {1 \over 3 } }} $$
$$⇒ {{2 \over \sqrt{3}} \over { 4 \over 3 } } $$
$$⇒ {2 \over \sqrt{3}} × {3 \over 4 }$$
$$⇒ { \sqrt{3} \over 2 } $$
Only sin 60° has the value equal to $ { \sqrt{3} \over 2 } $
Therefore, option (A) sin 60° is the correct option.
Choose the correct option and justify your choice:
(ii) $$ {{ 1 - tan^2 45°} \over { 1 + tan^2 45°} } = $$
(A) tan 90° (B) 1
(C) sin 45° (D) 0
Solution :
As we know,
tan 45° = $ 1 $.
By substituting trigonometric ratios
$$ {{ 1 - tan^2 45°} \over { 1 + tan^2 45°} } $$
$$ ⇒ {{ 1 - 1} \over { 1 + 1} }$$
$$⇒ {0 \over { 2 } } $$
$$⇒ 0 $$
Therefore, option (D) is the correct option.
Choose the correct option and justify your choice:
(iii) sin 2 A = 2 sin A is true when A =
(A) 0° (B) 30°
(C) 45° (D) 60°
Solution :
Given,
sin 2A = 2 sin A
Substituting A = 0° in L.H.S. and R.H.S. of above equation :
$$ {sin(0) = 2sin 0 } $$
$$ ⇒ {0 = 0 }$$
$$⇒ {L.H.S = R.H.S } $$
Therefore, option (A) is the correct option.
Choose the correct option and justify your choice:
(iv) $$ {{ 2 tan 30°} \over { 1 - tan^2 30°} } = $$
(A) cos 60° (B) sin 60°
(C) tan 60° (D) sin 30°
Solution :
As we know,
tan 30° = $ {1 \over \sqrt{3}} $.
By substituting trigonometric ratios
$$ {{2tan 30° } \over { 1 - tan^2 30°} } $$
$$⇒ {{{2 × {1 \over \sqrt{3}} } \over { 1 - ({1 \over \sqrt{3}})^2 } }} $$
$$⇒ {{2 \over \sqrt{3}} \over { 1 - {1 \over 3 } } } $$
$$⇒ {{2 \over \sqrt{3}} \over { 2 \over 3 } } $$
$$⇒ {{2 \over \sqrt{3}} × {3 \over 2 }}$$
$$⇒ { \sqrt{3} } $$
Only tan 60° has the value equal to $ \sqrt{3} $
Hence, option (C) is correct.
If tan (A+B) = $ \sqrt3 $ and tan (A – B) = $ {1 \over \sqrt{3}}$
0° < A + B ≤ 90°; A > B,
find A and B.
Solution :
Given, tan (A + B) = √3
As we know,
tan 60° = √3
$$⇒ A + B = 60° .....(i)$$
Given, tan (A - B) = $ {1 \over \sqrt{3}} $
As we know,
tan 30° = $ {1 \over \sqrt{3}} $
$$⇒ A - B = 30° .....(ii)$$
On adding both equations (i) and (ii), we obtain:
$$⇒ A + B + A – B = 60° + 30°$$
$$⇒ 2A = 90° $$
$$⇒ A = 45° $$
Put A = 45° in equation (1)
$$⇒ A + B = 60°$$
$$⇒ 45° + B = 60° $$
$$⇒ B = 60° - 45° $$
$$⇒ B = 15° $$
Thus, A = 45° and B = 15°
State whether the following are true or false. Justify your answer.
(i) sin (A+B) = sin A + sin B
Solution :
For the purpose of verification, Let
A = 45° and B = 45°
LHS: sin (45° + 45°)
$$⇒ sin 90° = 1 $$
RHS : sin 45° + sin 45°
$$ {1 \over \sqrt{2}} + {1 \over \sqrt{2}} $$
$$⇒ {2 \over \sqrt{2}} $$
⇒ LHS ≠ RHS.
Since, sin (A + B) ≠ sin A + sin B. Given statement is False .
State whether the following are true or false. Justify your answer.
(ii) The value of sin θ increases as θ increases
Solution :
For the purpose of verification, Let θ be 0°, 30° and 45°, 90°
$$ sin 0° = 0 $$
$$ sin 30° = { 1 \over 2 }$$
$$ sin 45° = {1 \over {{\sqrt 2}} } = 0.707 $$
$$ sin 60° = {\sqrt{3} \over 2 }= 0.866 $$
$$ sin 90° = 1$$
Hence, the statement the value of sin θ increases as θ increases is true.
State whether the following are true or false. Justify your answer.
(iii) The value of cos θ increases as θ increases
Solution :
For the purpose of verification, Let θ be 0°, 30° and 45°, 90°
$$ cos 0° = 1 $$
$$ cos 30° = {\sqrt{3} \over 2 }= 0.866 $$
$$ cos 45° = {1 \over {{\sqrt 2}} } = 0.707 $$
$$ cos 60° = { 1 \over 2 }$$
$$ cos 90° = 0 $$
Hence, the statement the value of cos θ increases as θ increases is False.
State whether the following are true or false. Justify your answer.
(iv) sin θ = cos θ for all values of θ.
Solution :
For the purpose of verification, Let θ = 0°
sin 0° = 0 and cos 0° = 1
From the values of standard angles tables it is wrong. It is true only for 45°.
Hence, the statement sin θ = cos θ for all values of θ is False.
State whether the following are true or false. Justify your answer.
(v) cot A is not defined for A =0°.
Solution :
As we know
cot A = cos A / sin A
cot 0° = cos 0° / sin 0°
cot 0° = 1 / 0 = $ \infty = Undefined $
Hence, the statement cot A is not defined for A = 0° is true.
Advanced courses and exam preparation.
Advanced courses and exam preparation.
Explore programming, data science, and AI.